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Unbounded incompressible fluid in solid-body rotation is subjected to spatially 
uniform strain rates that are sinusoidal in time and of arbitrarily large amplitude. 
The exact governing equations for the evolution of plane-wave disturbances to this 
time-periodic flow are linear, as for related steady flows. Attention focuses mainly on 
the inviscid problem, since incorporation of viscosity is straightforward. 

Plane-wave disturbances to axisymmetric flows are governed by a Hill’s equation, 
or equivalently, a pair of first-order equations, to which Floquet theory is applied. 
Analytical and computational results show several instability bands, the first few of 
which can exhibit large growth’ rates. The exact governing equations for plane-wave 
disturbances to non-axisymmetric flows are similarly derived ; but, as these are not 
singly periodic, results are given only for small-amplitude periodic forcing. As the 
non-axisymmetric ‘strain produces a periodic elliptical distortion of the flow, a 
modified elliptical-instability mechanism joins that present in axisymmetric cases. 

Despite necessary idealizations, the analysis and results shed light on the stability 
of periodically strained vortices in a turbulent environment and in geophysical 
contexts. 

1. Introduction 
Solutions of the Navier-Stokes and Euler equations may be obtained, without 

approximation, for spatially periodic disturbances of arbitrarily large amplitude 
embedded in ‘basic’ shear flows with spatially uniform strain rates. The procedure 
is described by Craik & Criminale (1986) and further exploited in Craik (1988, 1989). 
Antecedents, limited to special cases and mostly based on linear approximation 
(which is unnecessarily restrictive), are referenced in these works : note particularly 
Kelvin (1887) and Lagnado, Phan-Thien & Leal (1984). 

An important special case is that of two-dimensional flow with elliptical 
streamlines and constant vorticity : the instability observed in numerical simulations 
of Pierrehumbert (1986) motivated Bayly (1986) to examine this flow analytically, 
independently of Craik & Criminale (1986). Later studies followed, by Landman & 
Saffman (1987) and, with addition of Coriolis force, by Craik (1989). The realization 
that this flow is unstable, through a resonance mechanism, aroused considerable 
interest among workers on turbulence. For, the elliptical flow may be regarded as a 
local approximation of an eddy deformed by uniform external strain; and the 
instability provides a mechanism for spontaneous growth of wavenumbers small 
compared with the eddy size. Of course, disturbances of finite eddy structures must 
be affected by boundary conditions neglected in the unbounded case. But 
complementary theoretical and experimental work on stability of bounded elliptical 



614 A .  D .  D .  Craik and H .  R .  Allen 

flows (the former, in contrast to the unbounded case, being restricted to linearized or 
Galerkin approximation) yield results that display essentially the same resonance 
instability mechanism : see Gledzer et al. (1975), Vladimirov (1983), Robinson & 
Saffman (1984), Malkus (1989), Waleffe (1990), and reviews by Craik (1991) and 
Gledzer & Ponomarev (1992). 

The (unbounded) elliptical instability has also been invoked in explanation of the 
well-known secondary three-dimensional instability of laminar boundary layers 
(Landman & Saffman 1987; Bayly, Orszag & Herbert 1989). However, though 
distortion and stretching of vorticity hold the key to a physical understanding of 
both processes, the similarity between an unbounded vortex and a wall-bounded 
shear flow seems to us too remote to be helpful. Moreover, the usual explanation in 
terms of nonlinear interaction of two-dimensional and oblique TollmienSchlichting 
waves in boundary layers seems quite satisfactory (see for example Craik 1985). 

Given that the unbounded elliptical instability provides an informative model of 
strained eddies in turbulence, i t  is worthwhile to elucidate other models that yield 
local approximations of turbulent flows. The work of Lagnado et al. (1984) on the 
linear stability of steady flows with hyperbolic streamlines may be so interpreted: 
stretching of disturbance vorticity (see also Pearson 1959 ; Craik & Criminale 1986) 
then yields rapid disturbance growth. However, for most initial disturbances, this is 
also associated with an exponential increase in wavenumber ; and this continuous 
reduction in the lengthscale of disturbances means that inviscid growth is ultimately 
annihilated by viscous dissipation. (In contrast, the elliptical instability involved 
continuous net growth while the wavenumber varies periodically, and so is not 
ultimately dominated by viscous processes.) Nevertheless, the initial period of 
growth in hyperbolic flows may be crucially important, for it could lead to more 
complex flows through nonlinear mode interactions neglected in the single-mode 
formulation : for an example of such mode interaction in plane Couette flow, see the 
numerical simulation of Haynes (1987). Also, there are exceptional modes that are 
not ultimately damped: Craik & Criminale (1986, pp. 20, 24) drew attention to  a 
mode with continuously decreasing wavenumber that has locally constant vorticity 
and so velocities that increase exponentially with the increasing lengthscale. 

Here, we investigate the class of time-periodic basic flows with spatially uniform 
strain rates. These can be thought of as idealizations of local features within 
turbulent flows that display fluctuating rates of strain due to  external excitation, 
either deliberately imposed at boundaries or caused by neighbouring ‘eddies ’. Such 
flows are amenable to  analysis and clarify several important questions. In  particular, 
(i) what range of wavenumbers is driven unstable by periodic excitation 1 (ii) does the 
instability of these time-periodic flows reveal any new physical mechanism, apart 
from the elliptic instability 1 (iii) do larger fluctuations of the basic flow necessarily 
lead to stronger instabilities, or is the disturbance growth rate limited by some 
detuning process Tr 

Of course, the study of oscillatory forced systems has a long history, from Faraday 
(1831) onwards, but previous studies are restricted to linearized or weakly nonlinear 
approximations - see, for example, Benjamin & Ursell (1954), Nayfeh & Mook 
(1979), Miles & Henderson (1990). Closest in motivation to the present work (but 
employing linearized approximations) are the studies of McEwan & Robinson (1975) 
and Mansour & Lundgren (1990). The former investigate a density-stratified fluid in 
an oscillating container ; but the well-known analogy between density-stratification 
and uniform rotation allows parallel conclusions to be drawn for rotating flows. The 
latter study a compressible flow in solid-body rotation that is subjected to weak 
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periodic compression and rarefaction along the axis of rotation. In both cases, a 
Mathieu or Hill’s equation controls the linear stability of plane waves, as is also 
found here for axisymmetric flows. 

After the general formulation of $2, $33 and 4 focus on axisymmetric basic flows 
and $5 on non-axisymmetric ones. 

2. General formulation 
In  interests of brevity, the notation of Craik & Criminale (1986) and Craik (1989) 

is followed and frequent reference is made to these papers, henceforth designated ‘I ’ 
and ‘ I1 ’. Although the present account should be comprehensible without constantly 
consulting these papers, derivations of results given in them are not repeated here. 

Solutions of the incompressible NavierStokes equations, and hence of the inviscid 
Euler equations, are sought. As in I and 11, these comprise a ‘basic flow’ of general 
form 

and a ‘disturbance’ in the form of a single Fourier mode 
U,(X,, t )  = X, + QYt) (i,j = 1,2,3) 

The governing equations for the velocity components of this single-mode disturbance 
turn out to be linear, without approximation. Likewise, linear superposition of 
modes with wavenumber vectors of identical orientation but differing magnitudes 
still yields exact solutions ; but modes with differently directed wavenumber vectors 
interact nonlinearly. Here, we restrict attention to individual modes, with velocity 
components denoted by ui and associated pressures by p’ .  The admissible basic flows 
are linearly dependent on the space coordinates xi and the flow domain is regarded 
as infinite. Attention will focus on time-periodic basic flows and, unlike 11, the body 
force is taken to be zero. The elements crt, define a time-dependent matrix S(t) that 
must satisfy (see I ,  equation (2.4) or 11, equation (2.6)) 

where M(t) is an arbitrary symmetric matrix. 
For convenience, we restrict attention to basic flows with rates of strain that have 

principal directions, but not magnitudes, that are invariant in time and coincide with 
the coordinate axes. (This restriction may be relaxed.) We also set to zero. 
Accordingly, 

dS/dt+S2 = M(t) (symmetric) ; t r  (S) = 0, (2.3) 

-%(t) Y (2.4) 

(2.5) 

1 i -w2(t )  Ul(t) -W-W 

4 t )  - d t )  w2V) 

s = {a&)> = %(t) b(t) 

where the three vorticity components 2w, must satisfy (11, equation (4.3)) 

w,@) = w,,exP[~U,,(l.)df]. 

In this paper, we concentrate on sinusoidal strain rates 

for which 
a(t) = a,cosSZt, b(t) = b,cosSZt, SZ constant, 

( “ n )  t )  ( (aofSbo)sinQt 1 o1 = wl0 exp Asin Qt , w2 = wzoexp -sinSZt , w3 = w3,exp -- 
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Additionally, we restrict attention to cases with wl0 = w2, = 0 : there is then only 2- 
vorticity, stretched by the oscillatory strain rates. In contrast with the uniformly 
strained compressible flow examined in a linear approximation by Mansour & 
Lundgren ( 1990) , our strained incompressible flows are necessarily three-dimensional 
and no approximations are involved except in $53 and 5 .  

The variable wavenumber a(t) of the disturbances satisfies (I, eqyation ( 2 . 6 ) )  

da,/dt+a,akj = 0, i.e. da/dt+STa = 0, ( 2 . 7 ~ )  

which, for the basic flow ( 2 . 4 ) ,  yields 

(2 .7b )  1 (d/dt + a, cos at) a, = w2 a3 - w3 a2, 

(d/dt + b, cos Qt)  a2 = w3 a, - w1 a3, 

[d/dt - (ao + b,) cos Qt] a3 = w1 a2 - w2 a,, 

with the w j ( t )  as given in ( 2 . 6 ) .  It follows that 

(d/dt) (011 w1+ a2 02 + 013 w3) = 0, 

which permits elimination of (say) a3. Setting wl0 = w2, = 0 and introducing new 
variables 

p1= ~ l E ( % ) ,  P 2  = a2E(bo), ( 2 . 8 ~ )  

where 

gives 

@(,a) = exp (6 sin at) , 

dp,/dt + E (  - 2b0) w3, p2 = dP,/dt - E (  - 2a,) w3, p1 = 0, } (2 -8b)  
= a 3 0 W 3 0 / w 3 ( t )  = a30@(a0+b0) '  

Unfortunately, general closed-form solutions for P, and /I2 are unavailable. However, 
axisymmetric flows with a, = b, (which are studied in detail shortly) yield exact 
solutions. 

The velocity components u;(t) of the disturbance to the general flow (2 .4 )  may be 
associated to those in the inviscid limit Gj( t )  by the substitution (I, equation (3 .14 ) )  

i , ( t )  = exp { -~S(a-a)d t '}u '~( t )  0 

and the inviscid velocity components satisfy (I, (3 .15 ) )  

rij = aij-2a,ak akj/(a*a)> 

du'/dt + Uu' = 0, 
(2 .10)  

with the a,(t) given in terms of their initial values aj0 by ( 2 . 8 b ) .  The associated 
pressure disturbance is also known (I, equation ( 2 . 9 ) )  and, consistently with (2 .10)  
and continuity, 

which enables reduction of (2 .10 )  to coupled equations for two variables. 

introducing the new dependent variables 

s 

alu'l+a,u'2+a3u', = 0, (2.1 1 )  

For the present cases with wl0 = wz0 = 0, these can be written most compactly by 

P = a1J2-a2u',, Q = la(O)Iu', 

and defining dimensionless quantities 
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Then, after reduction, one finds 
dP/d7 = -(a+ 6) P COST+ w&, 

d7 (a-  a )  (a: + a:) 

617 

(2.12 a)  

+ (a } Q c o s ~  (2.12b) 
a-a  a) (a: + a:) 

together with (2.11). 

Axisymmetric j b w s  with a, = b, 
In  axisymmetric cases with a, = b,, (2.8) has solutions 

a, = e x p ( - ~ ~ s i n ~ ) B c o s ~ ,  a, = e x p ( - ~ s i n ~ ) B s : i  v, 

a, = exp (2asin 7 )  a,,, 

B = (a:, + a:,)$, #(7) = #, + 2 fi exp ( - 2asin 7') d7'. 

It is convenient to re-express #(7) as 

#(7) = # O +  ( w 3 0 / s 2 ) I O (  -2a) 7+9t(7), 

where I,@) is the modified Besael function 

(2.13) 

(2.14) 

1 "  
I @ )  = exp ( A   sin^) d7 

and 9 ( 7 )  is the periodic function, with period 2x, 

p(7) = - {exp ( - %%sin 7') -Io( - 2a)) d7' 21 
It follows that the complex combination a, + ia, is a product of periodic functions, 

[io,,Iok-2a)7 ] exp - asin 7 + i . ~ ( 7 ) 1 ,  a, + ia, = B e'+o exp (2.15) 

with respective periods 2x and 2xSa/ws,I,( -2a). 
On substituting these expressions for the a, in (2.12), the velocity equations reduce 

to 
-2@COS7 W 

- w sec2 8, E 
tan2 0, + Es 

2a cos 7(tan2 8, - 2E3) 
tan2 0, + E3 

(2.16) 

Here a, w and 8, appear as parameters and 

E(7) = exp (2CTsin7). 

Despite the two periodicities present in the wavenumber components a, and a,, the 
2 x 2 matrix of (2.16) is singly periodic, with period 2x. The second period disappears 
because of the axisymmetry of the basic flow ; this means that a, and a2 appear only 
in combination as their sum of squares. But the second period appears in the velocity 
equations if the strain rates a, and b, were unequal. Useful checks on the accuracy 
of (2.16) are that it agrees with the limiting caaes, examined in I ,  of purely circular 
flow (a, = 0) and of steady axisymmetric stagnation-point flow (w = 0 and 8 + 0 ) .  
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An alternative formulation of (2.16) as a single second-order equation is 

d2V I V{~2sec2B,E-2 +&sin7 ('-"*) - - & COS2 7 (1+14T+4T2)} = O ,  (2.17) 
(1+T)2 d72 l + T  l + T  

where V(7) is defined as 

and, for brevity, T(7) = tan2O,,Ep3(7). Since the coefficient of V is periodic in 7, this 
has the form of a Hill's equation (see Magnus & Winkler 1966). 

As the governing equations are linear and time-periodic, the stability problem may 
be solved by direct application of Floquet theory, as in the case of elliptical 
instability. 

3. Weakly oscillating axisymmetric flows 
When the oscillatory stagnation-point flow is weak compared with the rotational 

motion, the parameter & is small and the above equations may be expressed, to good 
approximation, by truncated power series in a. From (2.17), it is found after some 
effort that 

d2V/d72+ V{w2+$(9C2-6C-4) +asin 7[w2(2-6C) + (3C-2)] 

+&sin2 7[w2(36C2- 30G+ 2) + ( -27C2 +24C+ 4)] +O($) }  = 0, (3.1) 

where C I cos2 8,. If terms of O(&) are neglected, this reduces to Mathieu's equation, 

d2V/d72+ V{w2+&sin7[w2(2-6C)+ (3C-2)) = 0, (3.2) 
the stability properties of which are well-known (see e.g. Kevorkian & Cole 1981). 
The first unstable region, centred on w2 = t ,  has width 

lm2 - < l$?7m2(2 - 6C) + (3C - 2)] I x fla sin2 0, (3.3) 
for small ti. The second band of instability of Mathieu's equation is centred on w2 = 
1. However, since the bandwidth of this unstable region is of O(&), Mathieu's 
equation is unable to determine whether instability exists near w2 = 1 for the original 
equation (2.17). For this, the terms of O($) must be retained. 

The first few regions of instability of the equation 

d2y/dt2 + ( A  + y1 cos t + y2 cos 2 t )  y = 0 

have been determined numerically by Klotter & Kotowski (1943), the three- 
dimensional parameter surfaces being ingeniously displayed by photographs of 
cardboard models. Our equation (3.1) is obviously of this form. Also, Magnus & 
Winkler (1966) comprehensively describe the theory of Hill's equation. However, 
only the limiting case of small & is relevant here : perturbation techniques described 
by Kevorkian & Cole (1981) and Nayfeh & Mook (1979) then suffice to determine the 
first and second stability boundaries. 

The first instability region, if attainable, is characterized by the largest growth 
rates and so is less likely to be suppressed by viscous decay (see (2.9)). The value 
m2 = a corresponds to 

in the original variables, and the width of the region of inviscid instability centred 
upon it is given in (3.3). This instability region is attainable only if > $ and 

030 cos eo = f :Q 
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the most unstable wavenumbers are initially inclined at  an angle c0s-~lQ2/4w,,l to the 
axis of symmetry of the basic flow. The second region of instability, centred on 
wz = 1, is attainable only if ( w ~ ~ / Q ~  > i. The latter condition is more stringent than 
the former and the second region of instability is narrower,, of O($).  Consequently, 
for 5 small, the dominant instability is certainly that with wz x a. 

4. Numerical results and discussion 
In order to solve equation (2.16) a fourth-order RungeKutta-Merson scheme was 

employed on a Sunsparc 1 + Workstation running at  12.5 MIPS. The scheme was 
known to be highly reliable from previous experience of other problems. It employed 
an adaptive step-size control to achieve a predetermined local truncation error or 
tolerance. All calculations were done in double precision and the local truncation 
error was set initially to When necessary, this was refined to 10-lo. Occasional 
checks on the global error were made by reducing the tolerance to lo-' and 
discovering how many significant figures were unaffected by this change. It was 
concluded that a tolerance of was often adequate, but that the greater accuracy 
was needed in order to distinguish some very narrow regions of instability (see 
below). 

The procedure employed was that suggested by Floquet theory and is similar to 
(but numerically much more accurate than) that of 11. With chosen values of w ~ ~ / Q ,  
8 and O,, (2.16) was first solved with starting values (P ,  &) = ( 1 , O )  at 7 = 0 to find 
(P,, Q1) at 7 = 27c. Then with starting values (0, l),  (P,, Q )  at 7 = 27c were similarly 
calculated. It is known from theory that the resulting matrix 

N =  (pi pz) 
Qi Qz 

must have its determinant equal to unity ; and this was so to high accuracy in the 
computations. The eigenvalues of N are 

A,, A, = + tr  N & [act. N)2 - l]:, (4.1) 

and Floquet theory (see 11, p. 281) shows that any disturbance ( P , Q )  is a linear 
combination of two modes 

where the p t ( t )  and qr(t)  are periodic functions with period 27c and the crt are related 
to the eigenvalues of N by 

eul'(Pl, ql), eTP21%2)9 

1 
cr --log& 
- 27c 

There is instability whenever Re {crI} > 0 : that is, whenever the trace, tr (N), of N 
exceeds 2 or is less than -2. The stability boundaries with tr  (N) = 2 correspond to 
solutions with period 27c and those with tr (N) = -2 correspond to solutions with 
period n. As is normal for equations of Hill type (see Magnus & Winkler 1966), these 
yield two interleaved families of instability bands. 

The computations yielded values of tr (N) for Oo in the range [0, +n] at chosen 
values of 8 and W ~ ~ / Q .  The case w30/Q = 2 was investigated in great detail, for 8 in 
the range [0,2] with increments of 0.1. Other values of ws0/Q were also investigated : 
enough results, both theoretical and computational, are described below to indicate 
the general character of the solutions. Accordingly, we have resisted the temptation 
to present many additional graphs of results at various w30/sZ. 
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F'IQURE 1 (a, b ) .  The first ten unstable bands in the (B,,a)-plane for wao/'R = 2.0. Odd and even 
modes have neutral states of dimensionless period n and 271 respectively. Instability bands become 
progressively narrower the mode number n increases : those with n = 9 and 10 are at the limit 
of accuracy of our computations. 

80 

Results for w3,JS1 = 2 are shown in figures 1 (a) and 1 (b ) ,  where the horizontal axis 
is Bo and the vertical is a = ao/S1. The plotted curves show regions of instability; 
those in figure 1 (a) are for modes with tr  (N) < - 2 and those in figure 1 ( b )  are for 
modes with tr (N) > 2. Only two of these regions, labelled n = 1 and 2, are extensive, 
as indicated by cross-hatching. Regions n = 3 and 4 are much narrower though 
visible on the scale of the figures, while the others with n > 4 are usually narrower 
than the thickness of the lines shown. 
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Mode n 1 2 3 4 5 6 7 8 

0 0  1.4435 1.0677 0.8015 0.6125 0.4644 0.3576 0.2809 0.2248 
tr (N) -38.68 6.463 -2.066 2.0056 -2.000027 2.000023* -2.000006* 2.000003* 
Re {4 0.582 0.293 0.041 0.012 0.00083 0.00077* 0.00038* 0.00027* 

TABLE 1. Maximum values of tr(N) and growth rate Re{a} of the first eight modes, with 
corresponding angles O,, for o3,/0 = 2 and = 1. The accuracy of results marked with an asterisk 
is not guaranteed. 

Results for small a agree with expectations for equations of Hill type, with regions 
of parametric instability emanating from 

With w3,/SZ = 2, this yields eight roots, namely 8, = 1.3181, 1.0472, 0.7227 and 0 
radians for n = 2,4 ,6 ,  8, and 8, = 1.4455, 1.1864,0.8957,0.5054 radians for n = 1,3,  
5 ,7  respectively. This is precisely as found numerically. Notice, too, that the number 
of instability bands emanating from the axis ti = 0 increases as w3,/S2 increases. For 
0 < w3,/52 < a there are none, for a < w3,/S2 < there is just one and for w3,/52 = 1 
there are four. The number of such bands equals the largest integer less than or equal 
to 4w3,/S2. 

The first region of instability is much the strongest, as expected; for it is known 
that, at small a, the respective growth rates are of O ( P )  and these are confined to 
bandwidths of similar orders of magnitude. This means that it is very hard to detect 
the higher-order instabilities when is small. Accordingly, a slight compromise 
proved necessary in plotting figure 1 : for n > 4 the points plotted are those for which 
tr (N) exceeds 1,999 rather than 2 : however, it  should be emphasized that clear 
evidence of instability, with tr  (N) > 2, was found at some values of ti for all the n- 
values shown. 

To give a clearer impression of just how weak the higher-order instabilities are, we 
show in table 1 above the greatest value of tr (N) found a t  ti = 1 and wao/52 = 2 for 
the first eight instability regions. To detect the last two, a very fine mesh for 8, was 
needed. Also shown are the values of 8, and the maximum growth rate Re{a} 
calculated from (4.1) and (4.2). Of course, as was mentioned earlier, weakly growing 
instabilities will be susceptible to suppression by viscosity through the additional 
decay factor present in (2.9). The instability bands are exceedingly narrow for the 
larger n-values : for example, those with n = 6 and n = 8 are 0.357 44 < 8, < 0.357 74 
and 0.22476 < 8, < 0.22481 respectively. 

In contrast, the lowest modes can have remarkably large growth rates. The 
dimensional e-folding time is [27c Re{(r}]-l times the oscillation period 27c/52. For the 
n = 1 mode of table 1, this is less than one third of the period of oscillation and so 
only a few periods would normally be required for this mode to grow to prominence. 

There was much numerical evidence that, when ti is large, more instability bands 
are present than originate from the axis ti = 0. Only two of these, labelled n = 9 and 
10, are shown in figure 1 (a,  b )  : the other bands are too thin and the instabilities too 
weak for our results to be relied on and are therefore omitted. The various bands of 
instability may be roughly explained as follows. Equation (2.17) has the form 

d2V/dT2+R(7) V = 0, R(7) = R(7+2x) 
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0 0.25 0.50 0.75 1 .oo 1.25 1.50 
0" 

FIGURE 2 (u,  6 ) .  Comparison of results for unstable bands at wsO/s2 = 2.0 with the intuitive 
'averaged resonance condition' (4.4) (shown as points) for n = 1 to 8. 

and one might expect parametric-resonance instabilities to be centred on the 
'average frequencies ' satisfying 

I r2n 

R(7)d7 = an2 (n = 1,2,3,  ...). k J, (4.4) 

Though plausible, this criterion has no precise theoretical foundation except when a 
is small: accordingly, we carried out a comparison of (4.4) with the exact results 
shown in figure 1 (a,  b ) .  Equation (4.4) was solved iteratively for 8, with the first eight 
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n Unstable bandwidth Max t r  (N) 8 0  Re {4 
1 0.01625 < 8, < 0.2848 -8.25586 0.04057 0.3336 
2 9.42 x 10-3 c e, < 1.005 x 10-2 2.020 17 9.731 x 2.26 x 
3 4.711 x 10-3 < 8, c 4.784 x 10-3 -2.001 11 4.747 x 10-3 5.31 x 
4 1.966 x < 8, < 1.974 x 2.000 026 1.970 x 8.193 x 

TABLE 2. Results for w3JQ = 0.1, a = 2.0. Four unstable bands were found as shown. The maxima 
of Itr (N)I, the corresponding 8, and maximum growth rate Re (u} are also shown. Note that all 
except the n = 1 instability band are confined to very small 8, values. 

values n = 1 , 2 , .  . . , 8  at various values of a and with w3, /8  = 2. The results are 
shown as points in figure 2(a ,  b ) ,  where they may be compared with the precise 
regions of instability repeated from figure 1 (a ,  b ) .  Agreement is good at small values 
of h, but this deteriorates as 

Nevertheless, this rough qualitative agreement is enough to provide an explanation 
of the emergence of new instability bands from the 8, = 0 axis as a increases. The 
criterion (4.4) reduces to 

when 8, = 0. With 03,/52 = 2, this has roots with (n ,  a) equal to (8 ,0) ,  (9,0.25), (10, 
0.35), (11,0.43), (12,0.50) approximately, the values of the Bessel function I,(x) 
being taken from the tables of Abramowitz & Stegun (1965). In fact, these roots yield 
considerable underestimates of the true unstable values of obtained directly from 
the full equation (2.16). For example, the values of h shown on the axis 8, = 0 in 
figure 1 (a ,  b )  for n = 8 ,  9 and 10 are 0 ,  0.35 and 0.48 respectively. Despite the 
inaccuracy of the ‘ frequency-averaged ’ criterion (4.4), its roots correctly identify the 
general character of the instabilities as associated with higher-order parametric 
resonance. 

We also examined in detail the case w3, , /8  = 0.1 and a = 2. A t  this low value of 
w 3 , / 8 ,  there is no instability a t  any value of 8, when a is small; but at  a = 2, we 
found the four unstable bands and maximum growth rates shown in table 2. 

= a , / 8 ,  our results indicate that : (i) at any given frequency 8, 
all flows with non-zero rotation rates w3, are destabilized by suficiently large oscillatory 
rates of strain a, (even though instability at  small rates of strain is restricted to 
w3, > i8); (ii) with any given a, > 0 ,  all flows with mn-zero rotation rates w3, are 
destabilized when the forcing frequency 8 is suficiently small; (iii) when a, /Q is 0(1), 
inviscid growth rates of the lowest modes can be suficiently large for waves to appear 
within a few oscillation periods. 

increases. 

4w;,I,(4a)/522 = @2+&2 (4.5) 

On recalling that 

5. Non-axisymmetric flows with small-amplitude forcing 
Non-axisymmetric ‘basic’ flows with a, 9 b, are governed by (2 .8) ,  (2.11) and 

(2.12). In principle, for given initial data, (2.8) may be solved to find a( t )  and 
substitution in (2.12) still yields a linear problem for P and Q. But now the 
coefficients of P and Q in (2.12) need not be singly periodic in 7 and so Floquet theory 
is not applicable. Nevertheless, direct computation would still yield the evolutionary 
behaviour of particular cases. Instead, we here develop the approximate theory, 
valid for small a, and b,, that is equivalent to - but more complicated than - that for 
axisymmetric flows given in $3. 

With a, and b, small, of order e: say, the basic solid-body rotation about the z-axis 
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is only slightly altered by small non-axisymmetric time-periodic fluctuations. The 
following theory describes the evolution of single-mode disturbances up to arbitrarily 
large amplitudes, in response to such small-amplitude forcing. 

Equations (2.8b) then simplify to 

(5.1) 1 d/3Jdt+w3,P2 = &sin (Qt) Pz+O(e2) ,  

dp2/dt - w30 p1 = - €6 sin (at) PI + O(e2) ,  

where 2w3, a,/Q = €12, 2w3, b, /Q = €6 
and a“, 6 are 0(1) constants. 

Series expansion of PI and p2 as 

p, = py’ + €pi,’ + . . . 

(5.2) } (B,, 4, constant)., I leads to fro) = B, cos (w3, t+  $,), pio) = B, sin (w3, t + $,), 

dpy)/dt+ w3, @ = 6Bo sin (Qt) sin (w3, t + #,) 
d/3!!’/dt - w3, pi1) = - CZB, sin (Qt) cos (w30 t + 6,) 

The latter equations have the general solution 

p?) = B, cos (w3, t + $,) + iBo sin [(Q + ~ 3 0 )  t + $,I 

+ illo sin [ ( w ~ O  -a) t + #0] 

’ (5.3) 
pi1’ = B, sin (w3, t + + iB0 cos f2 + 2w3, 

{(6;”+( 6-6 )} 
++B, cos [ (w30  -Q) t + #03 - 

a-2w3, ’ J 
and B, may be set to zero without loss. The corresponding wavenumber components 
are then easily found from ( 2 . 8 ~ )  with O(2)  error. 

Substitution in (2.12) and retention of only leading terms in E is straightforward 
but tedious. With 0, = tan-l(B,/a,,) and reversion to the notation introduced above 
(2.12), equation (2.12b) yields 

_ -  dQ - Q c o s ~ { ( ~ + 6 ) ( s i n ~ 0 , - 2  cos20,)- (a-b)2 ~ o s ~ 0 , c o s [ ( 2 w , , / Q ) ~ + 2 $ ~ ] )  
dT 

+P{ -w++w(a+b) cos2 e0sinT--(a-6j c o s ~ , c o s ~ s i n  [ ( 2 w , , / ~ ) ~ + 2 # ~ ]  

1.3) (5.4) 
t~Bi cos2 ( ( ~ 3 o / Q )  7 + #,) + 6 - i  sin2 ( (w3,/Q) T + $,) 

Bt + aio 
- 2w sin 7 

at  this order. Here, 

2w30 r* E wsec0,+1 =--ti. 0 -  
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Further reduction eventually leads to 

) 
- (a+ 6) cos 7 IU 

M = [-a + wfsin 7 + g+ sin ((r+~ + 24,) [ -fcos 7 + h cos ((r% + 24,) , 
+ g- sin ((r-7 + 24,)] + h cos ( (r-7 + 24,)] 

R(w, c )  = [c2 + w( 1 + 2c - c2 - c3) + w2( 1 - C Z ) ] / ( C  + w ) ,  

f =  ( ~ + t i ) ( 3 c o s v o - i ) ,  g* = T ( E - ~ ) R R ( ~ ,  fcose,), h =-(a-~)cos2eo, 

( 
where each coefficient of the matrix M is correct a t  O(E).  

&. Its first time-derivative is then removed by introducing 
The system (5 .5)  may be recast as a single second-order equation by eliminating 

sin (g+7 + 24,) sin ((r-7 + 24, 
(r- 

+ 
which satisfies 

d2Y 
dT2 

where 

-- - - Y { w 2  + (a+ 6) psin 7 + (a- 6) [a+ sin ( ~ ‘ 7  + 24,,) 4- 8- sin (6-7 + 24, ) ] } ,  (5 .6)  

9 = 3 ~ 0 ~ ~ e , ( g - ~ ~ ) + ( ~ ~ - i ) ,  a* = + ( w + ~ ~ ~ e , ) ~ ~ ~ e , + w ~ ( w ,  rf:cose,). 
When a = 6, this reduces to the Mathieu equation (3 .2) ;  but, with += 6, it has 

three separate forcing terms with differing frequencies. This equation is of Hill type 
only when (r+ and (r- are rational numbers and usefully so only when these numbers 
are ratios of quite small integers. Despite recent progress, the basic theory is 
incomplete for frequencies that are not rationally related : accordingly, the stability 
properties of (5 .6)  are not fully understood. 

However, when the forcing parameters a and b are small, as here, a method 
described by Kevorkian & Cole (1981) may be applied to determine the dominant 
instability bands. In short, each forcing term is responsible for a region of instability 
centred on half its own frequency; namely 

1w2-al < il(a+b)Q x gla+6lsin2e0, (5 .7a)  

(5.7 b )  
Iw2-+((r-)21 < $( ( r - , -Z  l(a-6)a-l. (5.7c) 

lw2 - +((r+)2I < +(a’)-Z I (a- 6) &+I, 

Weaker, less important regions of instability also occur at higher order in E ,  centred 
on higher harmonics and sum-and-difference frequencies. 

In terms of original variables, the above three unstable frequency bands are 
centred on 

(5.8u-c) 

Since - 1 < cos 8, < 1, these are respectively attainable for some wavenumber 
orientation provided w3,/Q lies outside the intervals (-+,a), (-&+), (-t,Q). Clearly, 
when Iw9,/SZI < i ,  none of these resonances can happen: that is to say, the three 
potentially most important parametric instabilities arise for weak forcing only if the 
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frequency f.2 is suficiently small relative to the basic vorticity 20,~. When Iw30/f21 is 
large, the non-axisymmetric resonances (5 .8b,  c) approach cos8, = *$: as expected, 
these are the values of 8, for instability of steady elliptical flows (Bayly 1986). 

Fuller examination of the unstable parameter ranges of (5 .5)  and the more general 
(2.12) must be postponed. For related problems in structural mechanics, Barr & 
McWhannell (1971) and Othman, Watt & Barr (1987) report interesting numerical 
results on low-frequency instabilities excited by three separate higher, but rationally 
related, frequencies. For incommensurate frequencies, some fundamental issues are 
addressed by Johnson & Moser (1982). 

6. Conclusions 
Three-dimensional uniformly rotating flows subjected to time-periodic, spatially 

uniform strain rates support parametric-type instabilities of plane-wave distur- 
bances. The inviscid theory is exact for all disturbance amplitudes and extension 
to include viscosity in straightforward. 

For strain rates that are symmetric about the axis of rotation, plane waves are 
governed by equations of Hill type; and, when these strain rates are sufficiently 
small, the primary region of instability is determined by a Mathieu equation. For 
larger periodic strain rates, Floquet theory allied to numerical computation 
determined various bands of instability, as fully described in $4. Growth rates of the 
main instability bands can be large, with e-folding times of the same order as, or even 
smaller than, the oscillation period 2x/Q ; but higher-order instability bands have 
much smaller growth rates. 

With non-axisymmetric strain rates, the situation is more complex, for several 
forcing frequencies then coexist within the governing equations. Results a t  small 
forcing amplitudes are described in $5 ,  where it is shown that the axisymmetric 
parametric instability is joined by others related to the previously known instability 
of elliptical flows. 

Despite the idealizations inherent in our exact solutions, the results have relevance 
to the breakdown or persistence of eddies within turbulence, for the centre of such 
an eddy is certainly described locally by our analysis. We have shown that internal 
instabilities of parametric-resonance type occur, centred on specific wavenumber 
bands and certain ranges of frequency. But imposed frequencies that are too large 
compared with the eddy’s vorticity cannot cause such instability, at least with small- 
amplitude forcing. 

Of course, for finite eddies, additional modes of instability can arise by distortion 
of the boundaries (here taken to be at infinity) or on account of a non-uniform 
vorticity distribution : cf. Dritschel (1986, 1990). Also, the plane-wave structure 
imposed here is incompatible with boundary conditions a t  fixed walls. Nevertheless, 
as mentioned in the introduction, previous studies of elliptical instability show an 
encouraging connection between the growth rates of unstable normal modes in finite 
domains and those of unbounded plane waves. The same is likely to be so for the 
parametric instabilities discussed here. 
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